Hamiltonicity of k-Traceable Graphs
نویسندگان
چکیده
Let G be a graph. A Hamilton path in G is a path containing every vertex of G. The graph G is traceable if it contains a Hamilton path, while G is k-traceable if every induced subgraph of G of order k is traceable. In this paper, we study hamiltonicity of k-traceable graphs. For k ≥ 2 an integer, we define H(k) to be the largest integer such that there exists a k-traceable graph of order H(k) that is nonhamiltonian. For k ≤ 10, we determine the exact value of H(k). For k ≥ 11, we show that k + 2 ≤ H(k) ≤ 12(3k − 5).
منابع مشابه
A Traceability Conjecture for Oriented Graphs
A (di)graph G of order n is k-traceable (for some k, 1 ≤ k ≤ n) if every induced sub(di)graph of G of order k is traceable. It follows from Dirac’s degree condition for hamiltonicity that for k ≥ 2 every k-traceable graph of order at least 2k − 1 is hamiltonian. The same is true for strong oriented graphs when k = 2, 3, 4, but not when k ≥ 5. However, we conjecture that for k ≥ 2 every k-tracea...
متن کاملAn Inductive Construction for Hamilton Cycles in Kneser Graphs
The Kneser graph K(n, r) has as vertices all r-subsets of an n-set with two vertices adjacent if the corresponding subsets are disjoint. It is conjectured that, except for K(5, 2), these graphs are Hamiltonian for all n ≥ 2r +1. In this note we describe an inductive construction which relates Hamiltonicity of K(2r + 2s, r) to Hamiltonicity of K(2r′+s, r′). This shows (among other things) that H...
متن کاملComputational Results on the Traceability of Oriented Graphs of Small Order
A digraph D is traceable if it contains a path visiting every vertex, and hypotraceable if D is not traceable, but D − v is traceable for every vertex v ∈ V (D). Van Aardt, Frick, Katrenic̃ and Nielsen [Discrete Math. 11(2011), 1273-1280] showed that there exists a hypotraceable oriented graph of order n for every n > 8, except possibly for n = 9 or 11. These two outstanding existence questions ...
متن کاملCycles in k-traceable oriented graphs
A digraph of order at least k is termed k-traceable if each of its subdigraphs of order k is traceable. It turns out that several properties of tournaments—i.e., the 2-traceable oriented graphs—extend to k-traceable oriented graphs for small values of k. For instance, the authors together with O. Oellermann have recently shown that for k = 2, 3, 4, 5, 6, all ktraceable oriented graphs are trace...
متن کاملQuasi-Hamiltonicity: A Series of Necessary Conditions for a Digraph to Be Hamiltonian
We introduce new necessary conditions, k-quasi-hamiltonicity (0 k n ? 1), for a digraph of order n to be hamiltonian. Every (k + 1)-quasi-hamiltonian digraph is also k-quasi-hamiltonian; we construct digraphs which are k-quasi-hamiltonian, but not (k + 1)-quasi-hamiltonian. We design an algorithm that checks k-quasi-hamiltonicity of a given digraph with n vertices and m arcs in time O(nm k). We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011